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Introduction 
The  objective of this work is the development of efficient techniques t o  optimize  the 

cost  associated  with  transfer  trajectories to  libration  point  orbits in the  Sun-Earth-Moon 
four  body  problem, that may  include  lunar  gravity  assists.  Initially,  dynamical  systems 
theory  is used to  determine  invariant  manifolds  associated  with  the  desired  libration  point 
orbit.  These  manifolds  are employed to  produce  an  initial  approximation  to  the  transfer 
trajectory. Specific trajectory  requirements  such  as,  transfer  injection  constraints, inclusion 
of phasing  loops,  and  targeting of a specified state  on  the manifold  are  then  incorporated 
into  the design of the  transfer  trajectory. A two level differential  corrections  process  is  used 
to  produce a fully  continuous  trajectory  that  satisfies  the design constraints,  and  includes 
appropriate  lunar  and  solar  gravitational  models.  Based  on  this  methodology,  and  using  the 
manifold  structure  from  dynamical  systems  theory, a technique is  presented to  optimize  the 
cost  associated  with  insertion  onto  a specified libration  point  orbit. 

@rnF&iX 
Procedure ed*$ 

The  procedure  to  determine 'a suitable  transfer  trajectory  begins  with  the selection of a 
libration  point  orbit (LPO) that meets  the  desired  mission  criteria.  Based  on  this  periodic 
or  quasi-periodic  orbit,  then, a series of stable  manifolds  are  determined that  approach  the 
reference orbit  asympt~tically.[~-~I From  dynamical  systems  theory  it is  known that  the  stable 
and  unstable  manifolds  associated  with  periodic  (and  quasi-periodic)  solutions  form  surfaces 
in the six  dimensional  phase  space  (position  plus velocity).["3] Moreover, these  manifolds  ap- 
pear  as two dimensional  surfaces  when  projected  onto  three  dimensional  configuration  space 
(position  only).  States  that lie on  this  surface will asymptotically  approach  the reference 
orbit, provided that  the  state  matches  the  entire 7 dimensional  state  (position, velocity, and 
time)  on  the  manifold at the specified point. 

Along  this  surface  representing  the  stable  manifold, a single trajectory is  selected that 
contains  an  appropriate close approach to  the  Earth.  This  solution serves as  the  initial 
approximation  to  the  transfer  from  the  vicinity of the  Earth  to  the  libration  point  orbit.  In 
general, however, the  Earth close approach will not  satisfy  the  necessary  transfer  trajectory 
injection  (TTI)  constraints, such as  altitude  or  inclination.  Thus,  the  methodology  described 
in Howell and W i l ~ o n [ ~ ~ ~ ] ,  Wilson['], and Howell et al.['] is  employed t o  enforce the desired 
transfer  injection  conditions,  as well as,  to  target  the desired  manifold. 

To  apply  this  methodology, a single state is  selected  along the desired  stable  manifold 
to  serve  as a fixed target  point for the  end of the  transfer.  The fixed position  and  time 
corresponding to  this  state on the manifold  surface  are  targeted by a two level differential 
corrections  process to  produce  the  complete  transfer  trajectory.  In  order  to precisely ap- 
proach  the  desired  libration  point  orbit,  the final state  on  the  transfer  must,  in  fact, lie on 
the surface  defined  by the  stable  manifold.  The  position  and  time  requirements  can  be  met 
by this  procedure, however, the velocity at the final state is not  constrained  in  the  solution 
process. Therefore, a maneuver is  required to  correct  any velocity discontinuity between 
the  end of the  transfer  and  the  required velocity state on the manifold;  this  maneuver is 
called the  Libration  Orbit  Insertion  or  LOI.  Once  the  state of the vehicle is actually  on  the 
manifold  surface, it will then  approach  the  libration  point  orbit;  this  completes  the  transfer 
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from Earth  to  the  LPO  with,  theoretically,  no  additional  maneuvers. 

Selection of an Optimal LO1 Location 
The selection  process  for the fixed LO1 location is somewhat  arbitrary,  but  the  target 

state is  generally  chosen to produce a reasonable  insertion  cost  onto  the  desired  LPO.  It 
is  desired to allow this fixed state  to vary  in  some  specified  manner  in  order to  determine 
a more  optimal  location for the LO1 maneuver.  An  automated  procedure is  developed to 
vary  the  position  and  time of this final target  state, while  preserving the manifold  solution 
obtained  from  dynamical  systems  theory.  Thus,  the  resulting  transfer  trajectory will still 
insert  onto  the  same  manifold  surface  and  hence,  approach  the  desired  libration  point  orbit. 

Utilizing the previous  procedure,  the  selected final target  state  on  the  manifold  surface 
generates a transfer  that  may  or  may  not  correspond  to a solution  with  an  acceptable LO1 
cost. A methodology is sought to allow the “fixed” LO1 target  state  to vary  along  the two 
dimensional  manifold  surface to minimize the required  insertion  maneuver.  Schematically, 
this  is  depicted in Figure 1. Initially,  the  target  state X a c t  for the  transfer lies on  the  desired 
manifold  surface  in  position  and  time, but requires  some  associated LO1 cost to achieve 
the 7 dimensional  manifold  state  that will approach  the  libration  point  orbit.  Based  on 
this velocity  difference, a  change in state A X  is calculated to reduce  the  magnitude of the 
required  maneuver.  This  results  in a new final state X d e s  that,  in  all likelihood,  does  not  lie 
on the required  manifold  surface. However, if this new final state is projected back onto  the 
manifold  surface,  another  state X p r o j  is obtained  that  does lie on  the  desired  surface,  and 

Figure 1: Stylized  Representation of Manifold Targeting  Procedure 
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therefore, is an  acceptable final target  state. A new transfer is determined to  this new LO1 
location that should  require a smaller  maneuver to  insert  onto  the  manifold.  This  iterative 
process is repeated  until  some  minimum  cost is  achieved. 

One  Dimensional  Variations Along the Manifold 
As an  example of the  application of this  methodology,  consider the variation of the LO1 

target  state  along a single  manifold  trajectory. In this  case, the “surface”  is,  in  fact,  one 
dimensional,  corresponding to  the selected  manifold  solution.  Some LO1 target  state X a c t  

along  the  manifold is  selected and  the  transfer is computed t o  meet  the  desired  position 
and  time.  From  this  computed  solution,  changes  in  the  position  and  time ( A x )  of the final 
state  are  determined  that will reduce the velocity error.  This  change  in  state is added  to 
the previous  target  position  and  time to  produce a new final target  state X&..; however, this 
point  no  longer lies on the desired  manifold  surface. 

By projecting X d e s  onto  the  one  dimensional  manifold  trajectory, a new final target  state 
X p r o j  is determined.  This  projection is computed by minimizing the  distance  from  the  desired 
target, X & ,  to  some  point  on  the  actual  manifold  trajectory.  Once  the new Lo1 target  state 
is determined  from X p r o j ,  a new transfer is computed  using  the  previous  solution as an  initial 
guess. A new LO1 cost  is  computed  and  the  process is repeated  until  some  minimum  insertion 
cost  is  achieved.  Note that  time is  selected as the  independent  variable  along  the  manifold 
when projecting  the  desired  end  state  onto  the  manifold  surface.  The  time  along  the  manifold 
is monotonic  and  provides a one-to-one  mapping  along  the  trajectory, i.e., there is  only  one 
state  associated  with  each  time  along  the  one  dimensional  manifold.  To  ensure  an  adequate 
resolution for the  time variable  along the  manifold, a loth order  interpolation  scheme is  used 
with  nodes  selected  every  one  day  along the numerically  integrated  path.  This proves to  be 
an efficient method  to  both  store  and  evaluate  the manifold  states over a given time  interval. 

Results for 1-D Variations Along a Selected Manifold 
As an  example of this  process,  consider the direct  transfer  from  Earth  to a Lissajous 

orbit  about  the  Sun-Earth L2 point  using a single  lunar  gravity  assist.  The  one  dimensional 
manifold  trajectory  selected for this  analysis is plotted in Figure  2  in a frame  centered a t  
the  Earth  that  rotates  with  the  Earth  about  the  Sun, such that  the z axis  is  always  directed 
along  the line  from the  Sun  to  the  Earth.  In  the figure, the manifold path  extends  from  the 
lunar  orbit  to  the  state at J D  2454560.0, approximately half way through  the first  revolution 
along  the  Lissajous  orbit.  The  square  symbols  on  the  plot  denote 10 day  intervals  beginning 
at J D  2454370.0, just  after  the  lunar  encounter.  The  “nominal” LO1 point at JD 2454400.0 
is  also  marked.  To  isolate the effects of the variations  in  the LO1 target  state  location  on  the 
LO1 cost,  the  transfer  injection  date is fixed at some  value that is within  the  range identified 
for the given nominal.  The  transfer  to  the  nominal LO1 state is computed  as  described 
earlier,  and  then  the LO1 target  state  variation scheme  is  applied to  this  solution. 

The  results of this  procedure  are  presented  in  Figure 3 for the  direct  transfer case  (i.e., 
a transfer  with  no  phasing  loops).  In  the  figure,  the LO1 maneuver  cost is plotted as a 
function of the LO1 date for a series of transfer  injection  dates.  (To clarify the figure, the 
abscissa  corresponds to  LO1 target  Julian  date  minus 2454000.) Each  curve  in the figure 
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Figure 2: Selected  Manifold Trajectory for Earth-to-L2  Transfer  Example 
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Figure 3: LO1 Target  Date  Variation for  Direct  Transfer  Case 
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. 
represents  the  variation  in LO1 cost  for a specified transfer  injection  date; for example, the 
curve  labeled  62.5  corresponds to solutions  with  transfer  injection  on J D  (24543)62.5. The 
minimum LO1 cost  determined by the LO1 target  state  variation  procedure for each given 
TTI  date curve  is  marked  with a diamond.  These  minimums  are  connected by a dotted  line 
to  signify that a  continuum of solutions  are possible over the  range of TTI  dates  examined. 
Note that  the overall minimum LO1 cost  determined by this  procedure for the  range of dates 
examined is  0.31 m/s on J D  2454412.058, corresponding to  a transfer  injection  date of J D  
2454363.764. 

Conclusions 
This  procedure is  highly  applicable to  a variety of libration  point missions,  such as  the 

one  depicted  here  using a lunar  gravity  assist to facilitate  the  transfer  to a Sun-Earth L2 
Lissajous.  Similar  results are available for this  type of transfer  that includes  multiple  phasing 
loops  prior to the  lunar  encounter.  This  process  is  also useful in  missions  without  lunar 
gravity  assists,  such as the  upcoming  GENESIS Discovery mission.[’] Extension of the one 
dimensional  results to  the full  two  dimensional  surface will allow an  optimal LO1 location to  
be  determined  on  the  manifold  surface, while maintaining  the  desired  characteristics of the 
libration  point  orbit. 
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